ANÁLISE DA CONDUTIVIDADE ELÉTRICA E MECÂNICA DA LIGA AL-0,5%SI, COM E SEM ADIÇÕES DE NI [0,04-0,3]%

Barbosa, A.R.Z.¹; Araújo, Y.C.S¹; Holanda, A.I.C.²; Martins, J.M.²; Espíndola, E.E.L²; Medeiros, A.L.²; Costa, D.S.¹

¹Universidade Federal do Pará – Campus de Ananindeua, FEMat, UFPA. ²Universidade Federal do Pará – Campus Belém, FEM, UFPA. E-mail para contato: aliciareginazanon2@gmail.com

RESUMO

Com os avanços tecnológicos e a globalização, há uma necessidade crescente de expandir as redes de transmissão e distribuição de energia elétrica utilizando materiais de baixo custo e com propriedades eficientes. Este trabalho visa analisar a influência da variação de [0,04- 0,3]% de Ni nas propriedades elétricas e mecânicas de tração da liga Al- 0,5%Si. Foram realizados os ensaios de resistência elétrica e de tração para alcançar os resultados. A liga Al-Si-0,3%Ni apresentou um pequeno aumento de 1,42% na condutividade elétrica em comparação com a liga Al-Si. Em relação a resistência mecânica, as ligas com Ni apresentaram um melhor desempenho em comparação a liga Al-Si. Portanto, conclui-se que a presença de Ni teve uma influência significativa na resistência mecânica, porém proporcionou pouca alteração nas propriedades elétricas do material.

Palavras-Chaves: Alumínio; Transmissão; Distribuição; Propriedades.

1 INTRODUÇÃO

Com o progresso tecnológico e a globalização, a demanda mundial por energia elétrica está em constante crescimento. Consequentemente, há uma necessidade de desenvolver tecnologias que aprimorem os cabos de transmissão e distribuição de energia elétrica para atender essa crescente demanda. Neste contexto, existe uma busca por materiais mais eficiente e econômico para essas aplicações [1].

O alumínio (AI) possui características adequadas para tal aplicabilidade como uma boa condutividade elétrica, resistência a corrosão, leveza [2]. Porém, o Al comercialmente puro não possui uma elevada resistência mecânica, com a finalidade de aumentar essa propriedade são adicionados elementos químicos na matriz de alumínio [3].

Desse modo, utilizou-se o silício (Si), que reduz a formação de porosidade e melhora a fluidez do alumínio [4, 5, 6], e o níquel (Ni), que, em teores de até 2%, proporciona um aumento na resistência mecânica [7].

Para a aplicabilidade proposta, o material necessita ser submetido ao processo de conformação, neste estudo a conformação aplicada é a laminação a frio. A laminação a frio prova o encruamento do material, esse fenômeno pode ocasionar mudanças nas propriedades do produto [8].

Assim, o trabalho proposto teve a finalidade de avaliar e caracterizar a influência da variação de [0,04- 0,3]% de Ni nas propriedades elétricas e mecânicas da liga Al- 0,5%Si.

2 MATERIAIS E MÉTODOS

A pesquisa teve início com a fabricação das ligas, logo houve o seccionamento das amostras para os ensaios de resistência elétrica e os ensaios de resistência à tração. O fluxograma esquemático (Figura 1) demonstra a metodologia utilizada.

Vazamento no molde "U"

Amostras

Usinagem (18,5 mm)

Laminação (3 mm)

Resistência Elétrica

Ensaio de Tração

Análise dos Resultados

Figura 1 – Fluxograma dos processos realizados nas ligas.

Fonte: Autores, 2024.

2.1 Fundição

O processo de produção das ligas começa pelo cálculo estequiométrico para determinar a quantidade em peso de Si e Ni em relação a 800 gramas de Al. Posteriormente, esses elementos foram introduzidos em um cadinho de carbeto de silício (SiC) revertido com alumina em suspensão, para evitar a aderência do metal liquido no cadinho, e inseridos no forno mufla de marca GREFORTEC a 900 °C, para a fundição dos materiais.

Após a homogeneização dos elementos, o metal liquido foi vazado em um molde de coquilha metálica em formato de "U". Uma vez que as ligas se solidificaram, foram seccionadas amostras para os ensaios.

2.2 Preparação dos Corpos de Prova

Para a produção dos fios destinados aos ensaios de resistência elétrica e mecânico de tração, foi realizado o processo de usinagem para reduzir o diâmetro de 22,0 mm para 18,5 mm. Esse procedimento, além de auxiliar no acabamento superficial, é necessário para a execução da laminação a frio. Foram utilizados dois laminadores elétricos duo reversíveis da marca MENAC (Figura 2). Após passarem por múltiplos canais das laminadoras, os fios foram finalizados com o diâmetro de 3 mm.

69 MENACI

Figura 2 – Laminadores para a obtenção dos fios.

Fonte: Autores, 2024.

2.3 Resistência Elétrica

No ensaio de resistência elétrica, utilizou-se o microhmímetro MegaBras 2000e (Figura 3), realizado conforme as normas NBR 5118 [9], NBR 6814 [10] e NBR 6815 [11]. Os resultados obtidos foram convertidos para condutividade na escala "International Annealed Copper Standard" (%IACS).

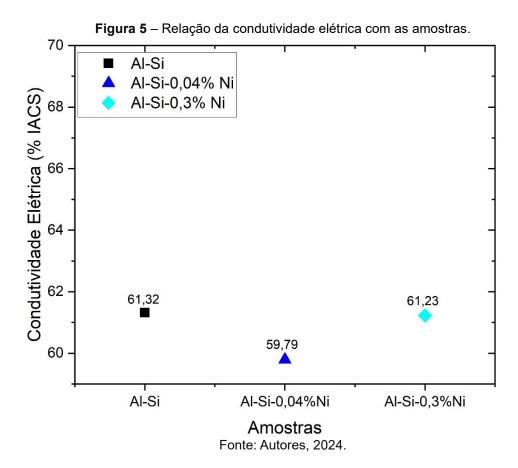
Figura 3 – Microhmímetro usado no ensaio.

Fonte: Autores, 2024.

2.4. Limite de Resistência à Tração

Após o ensaio de resistência elétrica, foi utilizado a máquina universal KRATOS, modelo IKCL1-USB (Figura 4), acoplada com um computador com sistema de aquisição de dados. Utilizou-se a norma NBR 6810 [12], relata que cada corpos de provas ensaiado teve possuir um comprimento útil de 150 mm.

Figura 4 – (a) Máquina de tração usada no ensaio mecânico; (b) ensaio de tração realizado em fio.


Fonte: Autores, 2024.

3 RESULTADOS E DISCUSSÃO

3.1 Condutividade Elétrica

Ao analisar os resultados da condutividade elétrica das amostras (Figura 5), observa-se que a liga com 0,04% de Ni apresenta diminuição de 1,53% na

condutividade em comparação com a liga Al- Si. Em contraste, quando a liga Al- Si foi comparada com a liga contendo 0,3% de Ni, verificou-se uma redução de 0,09% na propriedade elétrica.

A pequena redução da condutividade das ligas com a adição de Ni pode ser devido à dificuldade da diluição do teor de Ni na matriz de Al, assim não ocasionando ramos dendríticos que deveriam gerar uma convecção térmica na formação da zona coquilhada [13]. Portanto, possivelmente a solidificação do material influenciou na propriedade elétrica do material.

Outro fator que pode alterar as propriedades elétricas de um material é a mobilidade dos elétrons, que pode ser alterada por fatores que atuam como obstáculos ao fluxo. A presença de impurezas, as vibrações térmicas e o encruamento são condições que reduzem a mobilidade dos elétrons e, por consequência, diminuem a condutividade elétrica do material [14]. Portanto, pode-se supor que o Ni no teor de 0,04% possivelmente atuou como uma impureza na liga.

Já o encruamento de um material aumenta a densidade de discordâncias [15]. Esse aumento de densidade de discordância possivelmente ocasionou uma maior

presença de obstáculos, que, para serem ultrapassados, resultam em um maior gasto de energia e podem provocar uma perda de elétrons.

3.2 Limite de Resistência à Tração

Ao visualizar os resultados do limite de resistência à tração (LRT) das amostras (Figura 6), indicam um aumento de 3,24% da resistência da liga Al-Si-0,04%Ni e de 18,80% da liga Al-Si-0,3%Ni, quando compradas a liga Al-Si.

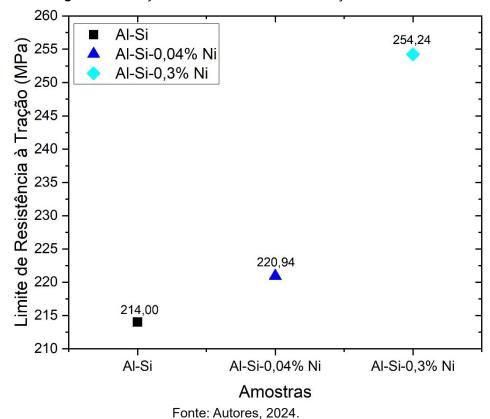


Figura 6 – Relação do limite de resistência à tração com as amostras.

A diferença dos valores dessa propriedade possível é pela dificuldade na movimentação das discordâncias, resulta no aumento da resistência mecânica do material. Isso sugere a hipótese de que o Si e o Ni possuem a capacidade de se dissolver na matriz de Al, o que impede a movimentação das discordâncias [16].

Por outro lado, esse comportamento pode ser atribuído ao aumento da densidade de discordâncias devido ao trabalho a frio, que provoca multiplicação das discordâncias ou da formação de novas. Consequentemente, ocorre o endurecimento denominado encruamento, que aumenta a tensão de escoamento e uma diminui a ductilidade [13, 15].

4 CONCLUSÃO

Foi possível inferir que a condutividade elétrica da liga Al-Si-0,3%Ni obteve um aumento de 1,42% comparada a condutividade da liga Al-Si. Possivelmente, ocasionada por uma melhor diluição e distribuição do Ni na matriz de Al.

Na propriedade mecânica de tração, os resultados sugerem que a adição do Ni influenciou na propriedade. Ressalta-se o aumento de 18,80% na liga Al-Si-0,3%Ni em comparação com a liga Al-Si. Esse aumento é provavelmente resultado do aumento da densidade de discordância, que dificultou a movimentação dos defeitos chamados de discordâncias e, assim, contribuiu para o aumento do limite de resistência à tração.

5 AGRADECIMENTO

Os professores orientadores e os autores desse trabalho agradecem o apoio da Universidade Federal do Pará (UFPA), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Alubar Metais e Cabos S.A., Grupo de Pesquisa em Materiais Metálicos (GPEMM) e ao Grupo de Pesquisa em Engenharia de Materiais (GPEMAT).

REFERÊNCIA

- 1. PRAZERES, E.R. Desenvolvimento de ligas de alumínio nanoestruturadas para a utilização em cabos elétricos. Tese (Doutorado) Universidade Federal do Pará, Instituto de Tecnologia, Programa de Pós-Graduação em Engenharia de Recursos Naturais na Amazônia, Belém, 2023.
- 2. ABAL- Associação Brasileira do Alumínio, 2023. Fundamentos e aplicações do alumínio.
- 3. PRAZERES. E.R. Avaliação da modificação da liga base Al-Cu-Mg por teores de N e Ti quanto a caracterização estrutural, elétrica e mecânica, a partir de ligas solidificadas em molde "U". Dissertação (mestrado em engenharia mecânica) Programa de Pós-Graduação em Engenharia Mecânica, Instituto de tecnologia, Universidade Federal do Pará, Belém, 2016.
- 4. GOMES, M. R.; BRESCIANI, E. F. Propriedade e usos de metais não ferrosos, 2 ed., São Paulo, Associação Brasileira de Metalurgia e Materiais, 1976.
- 5. FREITAS, E. S. Correlação entre as propriedades mecânicas e elétricas de fios para Tx e Dx de energia elétrica do Al-EC modificado com teores de silício e titânio, 2010. Dissertação (mestrado em engenharia mecânica) –Programa de Pós-

- Graduação em Engenharia Mecânica, Instituto de tecnologia, Universidade Federal do Pará, Belém, 2010.
- 6. FERNANDES, H. J. L. Influência do teor de soluto na molhabilidade e características estruturais, correlacionadas com propriedades mecânicas e elétricas de fios e cabos para transmissão e distribuição de energia nas ligas Al-EC-0,7%Si [0,05%;0,15%] Ti, Belém: 2011, 114 f. Dissertação (Mestrado em Engenharia Mecânica) Área de concentração materiais e processos de fabricação, FEM, ITEC, Universidade federal do Pará, Belém, 2011.
- 7. BATALU, D., GEORGETA, C., ANGEL, A., 2006. Critical analysis of Al-Ni phase diagrams. Metallurgia International, v. 11, n. 8, p. 36-45.
- 8. CORASSINI, E.; MAGNABOSCO, R. Influência do grau de encruamento e tratamento térmico de recozimento nas propriedades mecânicas do aço ABNT 1006. *In:* Congresso anual da ABM, 68, 2013, Belo Horizonte, M, Brasil. Anais... Belo Horizonte: ABM, 2013, 68V.
- 9. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 5118: Fios de alumínio 1350 nus, de seção circular, para fins elétricos. Rio de Janeiro, ago. 2007.
- 10. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6814: Fios e cabos elétricos Ensaio de resistência elétrica. Rio de Janeiro, mar. 1986.
- 11. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6815: Fios e cabos elétricos Ensaio de determinação da resistividade em componentes metálicos. Rio de Janeiro, ago. 1981.
- 12. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6810: Fios e cabos elétricos Tração à ruptura em componentes metálicos. Rio de Janeiro, ago. 1981.
- 13. MARQUES, L. L. P. Correlação das características macroestruturais com as propriedades elétricas das ligas de Al-0,5% e 1,5% Ni tratadas termicamente à 280 °C e 400 °C. Trabalho de Conclusão de Curso (Bacharel em Engenharia de Materiais) Universidade Federal do Pará, Campus Universitário de Ananindeua, Curso de Engenharia de Materiais, Ananindeua, 2023.
- 14. SOUZA, S.H. Estudo do encruamento, recristalização e evolução da textura cristalográfica da liga de alumínio AA 7108. Tese (Doutor em Ciências) Escola Politécnica da Universidade de São Paulo, São Paulo, 2021.
- 15. CALLISTER, W. D. Jr. Ciência e Tecnologia de Materiais: uma introdução. 9. ed. Rio de Janeiro: LTC, 2016.
- 16. SILVA, E. C. N. Efeito do silício e do manganês na microestrutura e nas propriedades mecânicas de ligas Al-Si-Mg-Cu forjadas. Tese (Doutorado em Engenharia Mecânica) Universidade Federal de São Carlos (UFSCar), 2020, São Carlos, SP.

TITLE

ANALYSIS OF THE ELECTRICAL AND MECHANICAL CONDUCTIVITY OF THE AL-0,5%SI ALLOY, WITH AND WITHOUT NI ADDITIONS [0,04-0,3]%

ABSTRACT

With technological advancements and globalization, there is a growing need to expand electricity transmission and distribution networks using low-cost materials with good properties. This study aims to analyze the influence of varying [0,04-0,3]% Ni on the electrical and tensile mechanical properties of the Al-0,5%Si alloy. Electrical resistance and tensile tests were conducted to obtain the results. The Al-Si-0,3%Ni alloy showed a slight increase of 1,42% in electrical conductivity compared to the Al-Si alloy. Regarding mechanical strength, the alloys with Ni exhibited better performance compared to the Al-Si alloy. Therefore, it is concluded that the presence of Ni had a significant influence on mechanical strength but caused little change in the material's electrical properties.

Keywords: Aluminum; Transmission; Distribution; Properties.