

Congresso Brasileiro de Engenharia e Ciência dos Materiais 24 a 28 de Novembro de 2024 | Fortaleza - CE - Brasil

SINERGISMO ENTRE "NÍVEL DE CONCENTRAÇÃO", "TIPO DE PARTÍCULA MICRO-ABRASIVA" E "TIPO LÍQUIDO" DE LAMAS MICRO-ABRASIVAS NO COMPORTAMENTO AO DESGASTE MICRO-ABRASIVO DA LIGA INTERMETÁLICA Fe-30AI-6Cr (at.%) – PARTE I: MODOS DE DESGASTE MICRO-ABRASIVOS

Angel Felipe Magnossão de Paula^a, Doris Feijó Leão Borges^b, Marcelo de Matos Macedo^c, Samuel Monteiro Júnior^d, Gleisa Pitareli^e, Muradiye Şahin^f, Vikas Verma^g, Bader Shafaqa Al-Anzi^h, Carlos Roberto Luna-Domínguezⁱ, Jorge Humberto Luna-Domínguezⁱ, Cláudio Geraldo Schönⁱ, Ronaldo Câmara Cozza^{e,*}

^a Universitat Politècnica de València Pattern Recognition and Human Language Technology – PRHLT Research Center

> ^b IFES – Instituto Federal do Espírito Santo Coordenadoria de Mecânica – Campus Vitória

^c UFABC – Universidade Federal do ABC Departamento de Engenharia de Materiais

^d FMU – Centro Universitário das Faculdades Metropolitanas Unidas Departamento de Engenharia Mecânica

^e CEETEPS – Centro Estadual de Educação Tecnológica "Paula Souza" Faculdade de Tecnologia de Mauá – FATEC-Mauá, Departamento de Fabricação Mecânica

> ^f Kırşehir Ahi Evran University Department of Chemistry, Turkey

⁹ Aqila Technologies and Integration Solutions Private Limited Department of Aerospace Design & Operations – India

^h Kuwait University College of Life Sciences, Environmental Sciences – Kuwait

> ⁱ Universidad Autónoma de Tamaulipas Facultad de Odontología – México

^j USP – Universidade de São Paulo Departamento de Engenharia Metalúrgica e de Materiais

* Av. Antônia Rosa Fioravante, 804 – 09390-120 – Mauá, SP. ronaldo.cozza@fatec.sp.gov.br

RESUMO

Observando-se a importância dos materiais intermetálicos em aplicações mecânicas e metalúrgicas, o presente trabalho expôs, como objetivo, investigar o comportamento tribológico quanto às transições dos modos de desgaste micro-abrasivos atuantes na liga intermetálica Fe-30Al-6Cr (at.%), ensaiada no estado metalúrgico "as cast". O contra-corpo foi uma esfera de aço-rolamento AISI 52100, com diâmetro de 25,4 mm (1") e as lamas micro-abrasivas foram preparadas com partículas micro-abrasivas de alumina – Al₂O₃ ou carbeto de silício preto – SiC, junto com água destilada ou glicerina, em quatro possíveis combinações: "Al₂O₃ + H₂O destilada", "Al₂O₃ + glicerina", "SiC + H₂O destilada" e "SiC + glicerina". Então, sob condição de força normal constante junto à diferentes composições de lamas micro-abrasivas, níveis de concentrações de lamas micro-abrasivos – considerando um mapa de atuação dos modos de desgaste micro-abrasivos – considerando-se "nível de concentração", "tipo de partícula micro-abrasiva" e "tipo líquido" de cada lama micro-abrasiva. Os resultados analisados mostraram que as ações dos modos de desgaste micro-abrasivos transitaram de "desgaste micro-abrasivo por riscamento", ocorrendo "desgaste micro-abrasivos do aumento da distância de deslizamento e da composição da lama micro-abrasivo.

Palavras-chave: Material intermetálico, desgaste micro-abrasivo, desgaste microabrasivo por riscamento, desgaste micro-abrasivo misto, desgaste micro-abrasivo por rolamento.

1. INTRODUÇÃO

Aluminetos, como uma classe específica de materiais, vêm sendo pesquisados desde a realização do procedimento histórico de ductilização de Ni₃Al, por meio de dopagem por boro (B), liderado por K. Aoki e colaboradores, no final da década de 1970⁽¹⁾. Desde então, engenheiros e cientistas observam, de forma cautelosa, as vantagens do uso de ligas de aluminetos – materiais intermetálicos – em aplicações mecânicas e metalúrgicas. Consequentemente, desde as décadas passadas, ligas metálicas contendo aluminetos de cobalto (CoAl₂O₄), aluminetos de ferro (FeAl, Fe₃Al), aluminetos de nióbio (NbAl, Nb₂Al, NbAl₃), aluminetos de níquel (NiAl, Ni₃Al) ou aluminetos de titânio (TiAl, Ti₃Al, TiAl₃) vêm sendo, intensamente pesquisadas, devido, principalmente, ao seu potencial de adoção como materiais estruturais sujeitos desde temperatura "ambiente" até temperaturas "elevadas"⁽²⁻⁴⁾.

Estas ligas contendo aluminetos apresentam uma elevada concentração de alumínio (AI)⁽³⁾, sendo capaz de formar uma contínua e aderente camada de óxido de

alumínio – alumina (Al₂O₃) – sobre a superfície exposta ao ar ou a atmosferas contendo oxigênio. Além da vantagem desta camada de alumina em proteger o material contra corrosão e elevadas temperaturas de oxidação⁽²⁻⁴⁾, devido a sua proeminente estabilidade termodinâmica, as ligas intermetálicas de aluminetos possuem menores densidades do que o óxido de cromo (Cr₂O₃) – escala característica de aços-inoxidáveis⁽³⁾, elevados pontos de fusão e, por consequência as suas estruturas cristalinas, apresentam significativas propriedades metalúrgicas e mecânicas⁽⁴⁻⁷⁾.

Em outra linha de pesquisa, "*desgaste micro-abrasivo*" é um problema tribológico comumente observado em componentes mecânicos de engenharia e a vida-útil destes é influenciada, diretamente, por suas propriedades metalúrgicas, mecânicas e pelas condições operacionais de trabalho. Consequentemente, quando materiais intermetálicos são direcionados para condições tribológicas adversas, as aplicações industriais prospectivas de ligas metálicas, contendo aluminetos de ferro, requerem a caracterização e a quantificação de suas propriedades tecnológicas, incluindo a análise do comportamento tribológico ao desgaste micro-abrasivo.

"Força normal" e *"concentração de partículas micro-abrasivas"* apresentam influência significativa sobre as atuações e transições entre os modos de desgaste micro-abrasivos⁽⁸⁻¹³⁾. Em linhas gerais, sob situações tribológicas envolvendo elevadas forças normais e baixas concentrações de partículas micro-abrasivas, haverá a predominância de *"micro-abrasão por riscamento"*, enquanto que, sob condições tribológicas envolvendo baixas forças normais e elevadas concentrações de partículas micro-abrasivas, há o favorecimento da ação de *"micro-abrasão por rolamento"*. Além disso, entre a atuação de *"micro-abrasão por riscamento"* e a atuação de *"micro-abrasão por rolamento"*, sendo caracterizada, tribológicamente, pelas ocorrências simultâneas de *"micro-abrasão por rolamento"*.

Adicionalmente, foi observado que a distância de deslizamento também influencia, significativamente, as ações tribológicas dos modos de desgaste microabrasivos⁽¹⁴⁻¹⁶⁾. De forma qualitativa, menores distâncias de deslizamento entre corpo e contra-corpo tendenciam a manifestação de "*micro-abrasão por riscamento*", enquanto que, aumentando-se a distância pela qual estes elementos deslizam entre si, ocorre a atuação de "*micro-abrasão por rolamento*".

Com isso, conhecendo-se a importância que as ligas contendo aluminetos de ferro representam para aplicações/trabalhos mecânico-metalúrgicos, a abordagem do

2523

presente trabalho alinha-se à análise tribológica comportamental em relação às ações e transições dos modos de desgaste micro-abrasivos atuantes na liga intermetálica Fe-30Al-6Cr (at.%).

2. MATERIAIS, TIPO DE ENSAIO DE DESGASTE & TRIBÔMETRO E PROCEDIMENTO EXPERIMENTAL

2.1. Materiais

O material intermetálico fabricado – Fe-30Al-6Cr (at.%) – possui composição química definida em 14,14% Al, 4,95% Cr, 0,75% Mo, 0,66% C e 78,57% Fe – % em massa. As Figuras 1a e 1b apresentam imagens microestruturais da liga intermetálica, consistindo de uma matriz de aluminetos – ordem D0₃ – reforçada por uma contínua rede de carbetos de cromo eutéticos nas regiões interdendríticas. Baseando-se na relação cromo/ferro, calculada por Espectroscopia de Raios-X por Dispersão em Energia (EDX), estes carbetos de cromo eutéticos foram identificados como M₇C₃. Adicionalmente, devido ao seu teor de carbono, a liga intermetálica produzida apresentou uma microestrutura rica em carbetos de cromo.

Figura 1. (a)-(b) Microestrutura da liga intermetálica Fe-30Al-6Cr (at.%).

O contra-corpo foi uma esfera de aço-rolamento AISI 52100, de diâmetro D = 25,4 mm (D = 1" - diâmetro padronizado), temperado em óleo a 860°C e revenido a 200°C durante 1 h.

As lamas micro-abrasivas foram preparadas com partículas micro-abrasivas de alumina (Al₂O₃) ou carbeto de silício preto (SiC), junto com água destilada (AD) ou glicerina (G), delineadas em quatro possíveis combinações: *i*) "Al₂O₃ + água destilada", *ii*) "Al₂O₃ + glicerina", *iii*) "SiC + água destilada" e *iv*) "SiC + glicerina".

A alumina (Al₂O₃) possui tamanho médio de partícula de $a_p = 6,5 \mu m$ e formato de caráter arredondado; por sua vez, o carbeto de silício preto (SiC) possui tamanho médio de partícula de $a_p = 3 \mu m$ e formato pontiagudo. A Figura 2a mostra uma imagem das partículas micro-abrasivas de Al₂O₃ e a Figura 2b apresenta uma imagem das partículas micro-abrasivas de SiC, ambas obtidas por Microscopia Eletrônica de Varredura – MEV.

Figura 2. Imagens obtidas por Microscopia Eletrônica de Varredura – MEV: (a) Partículas micro-abrasivas de Al₂O₃ e (b) partículas micro-abrasivas de SiC.

2.2. Tipo de Ensaio de Desgaste & Tribômetro e Parâmetros Experimentais

Para a condução dos ensaios de desgaste micro-abrasivo, foi adotada a técnica tribológica *"ball-cratering*", cujo princípio de operação está esquematizado na Figura 3a. Neste trabalho, foi utilizado um equipamento de ensaio de desgaste micro-abrasivo por esfera rotativa de configuração mecânica *"esfera-livre*" (Figura 3b).

Figura 3. (a) Representação esquemática do princípio de operação do ensaio de desgaste micro-abrasivo "*ball-cratering*" e (b) equipamento de ensaio de desgaste micro-abrasivo por esfera rotativa de configuração mecânica "*esfera-livre*", utilizado nos ensaios deste trabalho.

A Tabela 1 apresenta os parâmetros de ensaio estabelecidos para a realização dos experimentos tribológicos conduzidos neste estudo.

Parâmetro de ensaio	Valor		
Força normal [N]	Ν	0,4	
Composição de lama micro-abrasiva (em volume)	C_1	5% Al ₂ O ₃ + 95% água destilada	
	C_2	5% AI_2O_3 + 95% glicerina	
	C_3	5% SiC + 95% água destilada	
	C_4	5% SiC + 95% glicerina	
	C_5	50% AI_2O_3 + 50% água destilada	
	C_6	50% Al ₂ O ₃ + 50% glicerina	
	C_7	50% SiC + 50% água destilada	
	C_8	50% SiC + 50% glicerina	
Rotação da esfera de ensaio [rpm]	п	70	
Velocidade tangencial da esfera de ensaio [m/s]	v	0,093	
Tempo de ensaio [min]	t_1	1	
	t_2	2	
	t_3	4	
Distância de deslizamento [m]	S_1	5,6	
	S_2	11,2	
	S_3	22,4	

Tabela 1. Condições tribológicas definidas para os ensaios "ball-cratering" de micro-abrasão.

A força normal (*N*) definida para os experimentos de desgaste foi N = 0,4 N, junto a oito possíveis composições de lamas micro-abrasivas (*C*), sendo diferenciadas em função do tipo de partícula micro-abrasiva – alumina (Al₂O₃) ou carbeto de silício preto (SiC), tipo de líquido constituinte – água destilada (AD) ou glicerina (G), porcentagem volumétrica de partículas micro-abrasivas e líquido que compõem cada uma das misturas tribológicas, conforme as composições $C_1, C_2, ..., C_7$ e C_8 .

A rotação da esfera de ensaio foi fixada em n = 70 rpm e, junto a um diâmetro de D = 25,4 mm (R = 12,7 mm – raio da esfera), a velocidade tangencial da mesma ficou em v = 0,093 m/s. Três tempos de ensaio (*t*) foram definidos – $t_1 = 1 \text{ min}$, $t_2 = 2 \text{ min} \text{ e} t_3 = 4 \text{ min}$ que, sob o valor da velocidade tangencial da esfera de ensaio de v = 0,093 m/s, foram calculados os correspondentes valores de distâncias de deslizamento (*S*), quantificados em $S_1 = 5,6 \text{ m}$, $S_2 = 11,2 \text{ m} \text{ e} S_3 = 22,4 \text{ m}$, respectivamente.

Depois que todos os valores de força normal (*N*), composições de lamas microabrasivas (*C*) e distâncias de deslizamento (*S*) foram estabelecidos, vinte e quatro possíveis combinações entre "*N*", "*C*" e "*S*" foram delineadas. Então, para cada combinação de "*N* + *C* + *S*" – nomeadas de *Combinação 1*, *Combinação 2*, *Combinação 3*, …, *Combinação 22*, *Combinação 23* e *Combinação 24*, três experimentos foram conduzidos para cada valor de distância de deslizamento (*S*), definindo-se a seguinte sequência de ensaios, em função de *S*: $5,6 \Rightarrow 5,6 \Rightarrow 22,4 \Rightarrow$ $11,2 \Rightarrow 11,2 \Rightarrow 22,4 \Rightarrow 22,4 \Rightarrow 11,2 \Rightarrow 5,6 [m] – esta ordenação foi estabelecida por$ sorteio.

No total, setenta e dois (72) ensaios de desgaste micro-abrasivo por esfera rotativa foram realizados. Todos os experimentos tribológicos foram conduzidos sem interrupção e a lama micro-abrasiva foi, continuamente, agitada e gotejada entre a esfera de ensaio e o corpo-de-prova, durante as execuções experimentais.

Subsequentemente, ao final dos experimentos tribológicos, todas as crateras de desgaste geradas foram analisadas por Microscopia Óptica, software de CAD e Microscopia Eletrônica de Varredura – MEV, com o propósito de reportar os modos de desgaste micro-abrasivos atuantes.

3. RESULTADOS E DISCUSSÃO

3.1. Análise das ações dos modos de desgaste micro-abrasivos

Inicialmente, na Figura 4 estão dispostas imagens de crateras de desgaste geradas nos ensaios de desgaste micro-abrasivo por esfera rotativa desta pesquisa. Estas imagens estão organizadas em função do tipo de composição de lama micro-abrasiva (C_1 , C_2 , ..., C_7 e C_8) e da distância de deslizamento desenvolvida entre a esfera de ensaio e a liga intermetálica Fe-30AI-6Cr (at.%) (S_1 , S_2 e S_3).

Após, a Figura 5 apresenta o mapa de atuações e transições dos modos de desgaste micro-abrasivo reportados neste trabalho, em função da composição da lama micro-abrasiva (C) e da distância de deslizamento (S), também.

Figura 4. Crateras de desgaste geradas nos ensaios de desgaste micro-abrasivo por esfera rotativa, organizadas em função da composição da lama micro-abrasiva (*C*) e da distância de deslizamento (*S*).

Baseado na Figura 4 ll Composição da lama		Distância de deslizamento – S			
Linha micro-abra	micro-abrasiva – C	<i>S</i> ₁ = 5,6 m	<i>S</i> ₂ = 11,2 m	<i>S</i> ₃ = 22,4 m	
1	$C_1 = 5\% \text{ Al}_2\text{O}_3 + 95\% \text{ AD}$	Micro-abrasão por "riscamento"			
2	<i>C</i> ₂ = 5% Al ₂ O ₃ + 95% G				
3	C ₃ = 5% SiC + 95% AD	Micro-abrasão " <i>mista</i> "			
4	<i>C</i> ₄ = 5% SiC + 95% G				
5	$C_5 = 50\% \text{ Al}_2\text{O}_3 + 50\% \text{ AD}$				
6	<i>C</i> ₆ = 50% Al ₂ O ₃ + 50% G	Micro-abrasão por "rolamento"			
7	<i>C</i> ₇ = 50% SiC + 50% AD				
8	C ₈ = 50% SiC + 50% G				

Figura 5. Mapa de atuações e transições dos modos de desgaste micro-abrasivo, em função da composição da lama micro-abrasiva (*C*) e da distância de deslizamento (*S*).

3.2. Atuação do modo de desgaste micro-abrasivo por "riscamento"

Junto as composições de lamas micro-abrasivas " $C_1 = 5\%$ Al₂O₃ + 95% AD" e " $C_2 = 5\%$ Al₂O₃ + 95% G", todas as crateras de desgaste apresentaram a ocorrência de desgaste micro-abrasivo por "*riscamento*", conforme mostram as "*Linhas 1* e 2" das Figuras 4 e 5.

A ocorrência de desgaste micro-abrasivo por "*riscamento*", para todos os valores de distância de deslizamento (S_1 , S_2 e S_3), foi reportada, somente, para as crateras de desgaste geradas sob a concentração (C_n) contendo 5% de partículas micro-abrasivas de alumina – Al₂O₃ – e independeu do líquido constituinte da lama micro-abrasiva – água destilada (AD) ou glicerina (G).

Cozza *et alli*^(17,18) justificam este comportamento baseando-se na pressão de contato (*P*) desenvolvida no sistema tribológico "*esfera de ensaio* + *partículas micro-abrasivas* + *corpo-de-prova*", definida pela Equação 1⁽¹⁷⁾, em que A_t é a área projetada total da cratera de desgaste.

$$P = \frac{N}{A_t} \tag{1}$$

Adicionalmente, conceitua-se que a "*força normal* – N" – aplicada sobre o sistema tribológico durante os ensaios – é distribuída junto as " n_p " partículas micro-

abrasivas presentes entre a esfera de ensaio e o corpo-de-prova. Portanto, devido a baixa concentração de lama micro-abrasiva definida neste trabalho ($C_n = 5\%$ Al₂O₃), a quantidade de partículas micro-abrasivas atuantes no processo de desgaste, entre a esfera de ensaio e o corpo-de-prova, ficou reduzida, fazendo com que, a "*força normal agindo sobre cada partícula micro-abrasiva* – ΔN " fosse maior – $n_p \downarrow \Delta N \uparrow \Rightarrow \Delta N$ é inversamente proporcional a n_p . Fisicamente, a somatória de todos os valores de ΔN resulta na "*força normal* – N" aplicada sobre o sistema tribológico para a execução do ensaio – Equação 2:

$$N = \sum_{i=1}^{n_p} \Delta N_i \tag{2}$$

Com isso, devido a baixa capacidade de mobilidade imposta ao material microabrasivo que esta condição dinâmica promoveu, as partículas micro-abrasivas foram capazes de realizar somente o movimento cinemático de "*translação*" – *ato translatório* – sobre as superfícies das crateras de desgaste, gerando, consequentemente, desgaste micro-abrasivo por "*riscamento*" na liga intermetálica Fe-30AI-6Cr (at.%).

3.3. Atuação do modo de desgaste micro-abrasivo "misto"

Nos ensaios de desgaste micro-abrasivo por esfera rotativa conduzidos com as composições de lamas micro-abrasivas " $C_3 = 5\%$ SiC + 95% AD" e " $C_4 = 5\%$ SiC + 95% G" foram reportadas as transições entre os modos de desgaste micro-abrasivo "*misto*" e desgaste micro-abrasivo por "*rolamento*" \Rightarrow de "*micro-abrasão mista*" para "*micro-abrasão por rolamento*" – com o aumento da distância de deslizamento (*S*), conforme exibe as "Linhas 3 e 4", das Figuras 4 e 5.

Sob a composição de lama micro-abrasiva $C_3 = 5\%$ SiC + 95% AD, foi reportada a ocorrência de desgaste micro-abrasivo "*misto*" para as distâncias de deslizamento $S_1 = 5,6$ m e $S_2 = 11,2$ m; para $S_3 = 22,4$ m, foi registrada a ação de desgaste microabrasivo por "*rolamento*". Com a adoção da lama micro-abrasiva de composição $C_4 = 5\%$ SiC + 95% G, foram relatadas as ocorrências de desgaste micro-abrasivo "*misto*" para a distância de deslizamento $S_1 = 5,6$ m e desgaste micro-abrasivo por "*rolamento*" para as distâncias de deslizamento $S_2 = 11,2$ m e $S_3 = 22,4$ m.

Sobre este fenômeno tribológico, Cozza^(14,19) explica a transição entre os modos de desgaste micro-abrasivos com base na variação da distância de deslizamento (*S*) junto ao tamanho médio das partículas micro-abrasivas (a_p).

Com o aumento do valor da distância de deslizamento (*S*) e o consequente incremento da área superficial total de cada cratera de desgaste (A_s), passou a agir uma quantidade maior de partículas micro-abrasivas no processo de desgaste, entre a esfera de ensaio e a liga intermetálica Fe-30Al-6Cr (at.%). Adicionalmente a esta condição geométrica-numérica entre *S*, $A_s e n_p$, há, também, o fato de que o tamanho médio das partículas micro-abrasivas de SiC é menor do que o tamanho médio das partículas micro-abrasivas de Al₂O₃ – $a_p = 3 \mu m e a_p = 6,5 \mu m$, respectivamente – permitindo, assim, que houvesse uma quantidade ainda maior de material microabrasivo sobre a superfície de cada cratera de desgaste gerada no material intermetálico, sob a adoção de carbeto de silício preto. Com isso, para um mesmo valor de A_s , há, no mínimo, o dobro de partículas micro-abrasivas de SiC do que em relação a Al₂O₃, conforme mostra a Equação 3:

$$\frac{a_{p-Al_2O_3}}{a_{p-SiC}} = \frac{6.5\,\mu m}{3\,\mu m} \to \frac{a_{p-Al_2O_3}}{a_{p-SiC}} = 2.17 \div a_{p-Al_2O_3} = 2.17 \times a_{p-SiC} \tag{3}$$

Por sua vez, como a "força normal – N" foi mantida constante, a "força normal agindo sobre cada partícula micro-abrasiva – ΔN " de SiC diminuiu gradativamente e sob uma taxa de decaimento maior do que em relação a ΔN agindo sobre as partículas micro-abrasivas de Al₂O₃ – devido a maior quantidade de partículas micro-abrasivas de SiC presentes no sistema tribológico – ocasionando, consequentemente, que estas partículas micro-abrasivas adquirissem, também de forma gradativa e sob um tempo menor, maior grau de liberdade para atos de movimentação. Isto resultou que, ao longo do tempo, as partículas micro-abrasivas de desgaste micro-abrasivo por "*riscamento*" na região central das calotas esféricas – e passaram a executar, também, os movimentos cinemáticos de "*translação* + *rotação*" – em particular e com maior tenuidade, nas bordas de cada calota esférica, locais que foram reportadas as atuações de desgaste micro-abrasivo por "*rolamento*".

3.4. Atuação do modo de desgaste micro-abrasivo por "rolamento"

Os ensaios "*ball-cratering*" realizados com as composições de lamas microabrasivas " $C_5 = 50\%$ Al₂O₃ + 50% AD", " $C_6 = 50\%$ Al₂O₃ + 50% G", " $C_7 = 50\%$ SiC + 50% AD" e " $C_8 = 50\%$ SiC + 50% G" ocasionaram, em todas as crateras de desgaste, a ocorrência de desgaste micro-abrasivo por "*rolamento*", independente da distância de deslizamento (*S*), do tipo de partícula micro-abrasiva – Al_2O_3 (alumina) ou SiC (carbeto de silício preto) – e do tipo de líquido – água destilada (AD) ou glicerina (G), com referência as "*Linhas 5-8*", das Figuras 4 e 5.

Como já fundamentado, o aumento da distância de deslizamento (*S*) conduz a um consequente aumento da área superficial total da cratera de desgaste (A_s), possibilitando, assim, a acomodação de uma quantidade maior de partículas microabrasivas junto ao sistema tribológico. Aumentando-se o valor da concentração da lama micro-abrasiva de $C_n = 5\%$ de material micro-abrasivo para $C_n = 50\%$ de material micro-abrasivo, há uma ocupação proporcionalmente maior da área superficial total da cratera de desgaste (A_s) por partículas micro-abrasivas, fazendo com que a força normal atuando sobre cada partícula micro-abrasiva (ΔN) seja, também, proporcionalmente menor.

Por sua vez, junto a maior taxa de decaimento de ΔN , há, consequentemente, um incremento significativo no nível de mobilidade das partículas micro-abrasivas, sendo, sob esta condição física, capazes de realizar os movimentos cinemáticos de *"translação + rotação"*, gerando, assim, desgaste micro-abrasivo por *"rolamento"* sobre a superfície da cratera de desgaste.

4. CONCLUSÕES

A composição da lama micro-abrasiva apresentou influência sobre as atuações e as transições entre os modos de desgaste micro-abrasivos, conforme as fundamentações organizadas a seguir:

(1) Sob uma concentração de lama micro-abrasiva de C_n = 5% de material microabrasivo, o tipo de material micro-abrasivo, o tipo de líquido e a distância de deslizamento apresentaram influência sobre as ações e sobre as transições entre os modos de desgaste micro-abrasivos. Com a adoção de Al₂O₃, todas as condições tribológicas condicionaram os resultados a convergirem para a atuação de desgaste micro-abrasivo por "*riscamento*" sobre a superfície da liga intermetálica Fe-30Al-6Cr (at.%). Por outro lado, com o uso de SiC, as ações de "*micro-abrasão mista*" e "*micro-abrasão por rolamento*", assim como as transições de "*micro-abrasão mista*" para "*micro-abrasão por rolamento*", sofreram interferências quanto a adoção de água destilada ou glicerina como líquido constituinte da lama micro-abrasiva e quanto a distância de deslizamento; (2) Sob uma concentração de lama micro-abrasiva de C_n = 50% de material microabrasivo, o tipo de material micro-abrasivo, o tipo de líquido e a distância de deslizamento não apresentaram influência sobre as transições entre os modos de desgaste micro-abrasivos, sendo reportada, somente, a atuação de desgaste micro-abrasivo por "*rolamento*" na superfície da liga intermetálica Fe-30Al-6Cr (at.%).

REFERÊNCIAS BIBLIOGRÁFICAS

- K. Aoki. Ductilization of L1₂ Intermetallic Compound Ni₃Al by Microalloying with Boron. Materials Transactions – JIM 31 (6) (1990) 443-448. https://www.jim.or.jp/journal/e/31/06/443.html
- (2) J.H. Schneibel, E.P. George, I.M. Anderson. Tensile ductility, slow crack growth, and fracture mode of ternary B2 iron aluminides at room temperature. Intermetallics 5 (3) (1997) 185-193. https://doi.org/10.1016/S0966-9795(96)00087-8
- (3) S.C. Deevi, V.K. Sikka. Nickel and iron aluminides: an overview on properties, processing, and applications. Intermetallics 4 (1996) 357-375. https://doi.org/10.1016/0966-9795(95)00056-9
- D.G. Morris. Possibilities for high-temperature strengthening in iron aluminides. Intermetallics 6 (1998) 753-758. <u>https://doi.org/10.1016/S0966-9795(98)00028-4</u>
- (5) F. Stein, A. Schneider, G. Frommeyer. Flow stress anomaly and order-disorder transitions in Fe₃Al-based Fe-Al-Ti-X alloys with X = V, Cr, Nb, or Mo. Intermetallics 11 (2003) 71-82. https://doi.org/10.1016/S0966-9795(02)00187-5
- (6) F. Dobeš, K. Milička. Estimation of ductility of Fe-Al alloys by means of small punch test. Intermetallics 18 (2010) 1357-1359. https://doi.org/10.1016/j.intermet.2009.11.002
- (7) D.G. Morris, J. Chao, C. Garcia Oca, M.A. Muñoz-Morris. Obtaining good ductility in an FeAI intermetallic. Materials Science and Engineering A339 (2003) 232-240. https://doi.org/10.1016/S0921-5093(02)00108-9
- (8) R.I. Trezona, D.N. Allsopp, I.M. Hutchings. Transitions between two-body and three-body abrasive wear: influence of test conditions in the microscale abrasive wear test. Wear 225-229 (1999) 205-214. https://doi.org/10.1016/S0043-1648(98)00358-5
- K. Adachi, I.M. Hutchings. Wear-mode mapping for the micro-scale abrasion test. Wear 255 (2003) 23-29. https://doi.org/10.1016/S0043-1648(03)00073-5
- (10) J.O. Bello, R.J.K. Wood. Grooving micro-abrasion of polyamide 11 coated carbon steel tubulars for downhole application. Wear 255 (7-12) (2003) 1157-1167. <u>https://doi.org/10.1016/S0043-1648(03)00226-6</u>
- (11) J.O. Bello, R.J.K. Wood. Micro-abrasion of filled and unfilled polyamide 11 coatings. Wear 258 (1-4) (2005) 294-302. <u>https://doi.org/10.1016/j.wear.2004.08.008</u>

- (12) K. Adachi, I.M. Hutchings. Sensitivity of wear rates in the micro-scale abrasion test to test conditions and material hardness. Wear 258 (1-4) (2005) 318-321. <u>https://doi.org/10.1016/j.wear.2004.02.016</u>
- (13) K. Bose, R.J.K. Wood. Optimum tests conditions for attaining uniform rolling abrasion in ball cratering tests on hard coatings. Wear 258 (1-4) (2005) 322-332. <u>https://doi.org/10.1016/j.wear.2004.09.018</u>
- (14) R.C. Cozza. Effect of sliding distance on abrasive wear modes transition. Journal of Materials Research and Technology 4 (2) (2015) 144-150. http://dx.doi.org/10.1016/j.jmrt.2014.10.007
- (15) R.C. Cozza, C.G. Schön. Evidence of Superposition between Grooving Abrasion and Rolling Abrasion. Tribology Transactions 58 (2015) 875-881. https://doi.org/10.1080/10402004.2015.1024907
- (16) M.T. Umemura, L.B. Varela, C.E. Pinedo, R.C. Cozza, A.P. Tschiptschin. Assessment of tribological properties of plasma nitrided 410S ferritic-martensitic stainless steels. Wear 426-427 (2019) 49-58. <u>https://doi.org/10.1016/j.wear.2018.12.092</u>
- (17) R.C. Cozza, J.D.B. de Mello, D.K. Tanaka, R.M. Souza. Relationship between test severity and wear mode transition in micro-abrasive wear tests. Wear 263 (1-6) (2007) 111-116. https://doi.org/10.1016/j.wear.2007.01.099
- (18) M.M. Macedo, J.H. Luna-Domínguez, V. Verma, C.G. Schön, R.C. Cozza. Assessment of micro-abrasive wear tribological properties of H10 tool-steel under conditions of "constant normal force ⇒ variable pressure" and "constant pressure ⇒ variable normal force". Wear 476 (2021) 203664. https://doi.org/10.1016/j.wear.2021.203664
- (19) R.C. Cozza. Third abrasive wear mode: is it possible? Journal of Materials Research and Technology 3 (2) (2014) 191-193. https://doi.org/10.1016/j.jmrt.2014.03.010

SYNERGISM BETWEEN "CONCENTRATION LEVEL", "TYPE OF MICRO-ABRASIVE PARTICLE" AND "TYPE OF LIQUID" OF MICRO-ABRASIVE SLURRIES ON MICRO-ABRASIVE WEAR BEHAVIOR OF THE Fe-30AI-6Cr (at.%) INTERMETALLIC ALLOY – PART I: MICRO-ABRASIVE WEAR MODES

ABSTRACT

Realizing the importance of intermetallic materials in mechanical and metallurgical applications, the present work aims at investigating the micro-abrasive wear behaviour of the Fe-30AI-6Cr (at.%) intermetallic alloy, tested in the "as cast" state. The counterbody was an AISI 52100 bearing-steel sphere with a diameter of 25.4 mm (1"), and the micro-abrasive slurries were prepared with micro-abrasive particles of alumina – Al₂O₃ or black silicon carbide – SiC, and distilled water or glycerin, into the following four possible combinations of materials \Rightarrow "Al₂O₃ + H₂O distilled", "Al₂O₃ + glycerin", "SiC + H_2O distilled" and "SiC + glycerin". Then, establishing a test condition of constant normal force, together with different levels micro-abrasive slurries concentrations and sliding distances, a factorial experiment was designed. Initially, a map of action of the micro-abrasive wear modes was as a function of the "concentration level", "type of micro-abrasive particle", and "type of liquid" for each micro-abrasive slurry used in the experiments. The obtained results showed that the actions of the micro-abrasive wear modes transitioned from "grooving micro-abrasion", occurring "mixed micro-abrasion", and culminating in "rolling micro-abrasion", due to the increase of the sliding distance, and of the micro-abrasive slurry composition.

Keywords: Intermetallic material, micro-abrasive wear, grooving micro-abrasive wear, mixed micro-abrasive wear, rolling micro-abrasive wear.