

ESTUDO DA INFLUÊNCIA DO ÂNGULO DA FERRAMENTA NA SOLDAGEM FSW DISSIMILAR DE COBRE ELETROLÍTICO E LATÃO

Manganaro, V.S. - manganaro.vinicius@aluno.ifsp.edu.br¹
*<u>Varasquim, F.M.F.A.</u> - franciscomateus@ifsp.edu.br¹
Cruz Junior, E.J. - dacruz.eli@ifsp.edu.br¹
Faustino, A. C. - alexandre.faustino@ifsp.edu.br¹
Santos, G.A. - givanildo@ifsp.edu.br²
Ventrella, V.A. - vicente.ventrella@unesp.br³
Toledo, M.R. - maike.r@aluno.ifsp.edu.br¹
Santos, V.T. - vinicius.santos@termomecanica.com.br⁴
Silva, M.R. - marcio.rodrigues@termomecanica.com.br⁴

¹Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - IFSP Campus de Itapetininga
²Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - IFSP Campus de São Paulo
³Faculdade de Engenharia de Ilha Solteira-UNESP, Departamento de Engenharia Mecânica
⁴Termomecanica São Paulo S.A.

RESUMO

O processo de soldagem FSW é um método que utiliza uma ferramenta rotativa com um pino não consumível para realizar a soldagem de matérias. Contudo a configuração de seus parâmetros é de extrema importância para a obtenção de um cordão de solda adequado. Este projeto avaliou a influência do ângulo da ferramenta no processo de soldagem FSW dissimilar entre chapas de cobre eletrolítico e latão. As ferramentas foram confeccionas em aço SAE 5160, com pino cônico. Os ensaios foram realizados em um centro de usinagem com 5 eixos utilizando os seguintes ângulos de ferramenta 0°, 1°, 2° e 3°, a rotação foi de 1050 rpm com o avanço de 20 mm/min. Os cordões de solda gerados foram avaliados em escala visual, analisados através de macrografia, micrografia e a dureza comparando o material base, zona termicamente afetada e região soldada. O melhor resultado obtido foi o ensaio com 2°.

Palavras-chave: Soldagem dissimilar, Micrografia, Dureza, FSW.

INTRODUÇÃO

O cobre e suas ligas são aplicados em diversas áreas por apresentarem uma grande capacidade de trabalho a frio, resistência a corrosão em ambientes marinhos, atmosféricos e químicos [1]. O latão é a liga de cobre mais conhecida, nela o Zinco (Zn) é o principal elemento de liga (Cu-Zn). No entanto algumas dificuldades são encontradas em processos convencionais de solda dessas ligas, como a mudança de cor por oxidação em altas temperaturas, pouca penetração de material, perca de resistência e deformações permanentes [1,2]. Segundo Meran *et al.* [3] um dos grandes problemas enfrentados na solda de latão é a evaporação do zinco e do cobre, normalmente o zinco evapora a 907° C, e o cobre a 2590°, enquanto a temperatura de solda do processo TIG (*Tungsten Inert Gas*) chega 4200° C no eletrodo e 3200° C na peça, a evaporação desses materiais resulta em porosidades, oxidações e perda de coloração.

Com isso a soldagem por fricção e mistura (FSW – *Friction Stir Welding*), foi desenvolvido em 1991 pelo *The Welding Institute*, surge como uma alternativa. É um processo de soldagem em estado sólido, que utiliza uma ferramenta não consumível de maior dureza quando comparada as peças soldadas, o diferencial deste processo é que a temperatura atingida não chega próximo do ponto de fusão dos materiais unidos [4].

Apesar de inicialmente ter sido desenvolvido e aplicado em ligas de alumínio, o FSW se mostrou muito versátil e útil na união de outros compostos metálicos. Nos últimos cinco anos o FSW foi estudado na união de cobre e latão de maneira mais aprofundada, analisando influência de parâmetros e características obtidas no material após o processo [5-8].

No processo FSW uma ferramenta rotativa é inserida nas chapas que são soldadas, então ela se desloca em uma linha, e por meio do calor e da deformação plástica gerados pelo pino e pelo ombro da ferramenta uma região de solda se forma [9,10]. A Figura 1 apresenta as etapas do processo FSW. Essa técnica pode ser empregada em materiais similares ou dissimilares, isso viabiliza a combinação de um ou mais materiais para aplicações nas indústrias automotivas e aeroespaciais.

Figura 1 – (01) Aproximação e penetração da ferramenta. (02) Tempo de aquecimento. (03) Soldagem. (04) Saida da ferramenta. [11]

É o ângulo em que a ferramenta penetra no material. Aumentar o ângulo de inclinação aumenta o torque e as forças de soldagem na interface entre a ferramenta e a peça, bem como aumentam o volume de material deslocado [12]. Inclinar a ferramenta proporciona mais temperatura no lado de avanço da ferramenta, gera uma força de atrito maior entre a peça e a ferramenta e aumenta a força de agitação do processo beneficiando a mistura do material [13]. A aparência superficial da solda é influenciada pelo ângulo da ferramenta [14]. Esse trabalho tem como principal objetivo avaliar a influência do ângulo da ferramenta na qualidade da junta soldada pelo processo FSW em chapas sobrepostas de cobre e latão.

MATERIAIS E MÉTODOS

Os materiais utilizados foram doados pela Termomecanica, sendo esses, as ligas C272 e C194, as Tabelas 1 e 2 apresentam sua composição química.

Zn	Pb	Sn	Р	Mn	Fe	Ni		Mg	(Cr
%	%	%	%	%	%	%		%	9	6
1,90	0,0069	0,0041	0,0803	0,0034	1,72	0,00	53	0,00059) 0	,00021
As	Sb	Bi	Ag	Al	S		С	C	u	
%	%	%	%	%	%)	%	%)]
0,002	6 0,030	2 0,002	7 0,000	82 0,00	016 0,	0031	0,0	083 9	6,2	

Tabela 1 – Composição química do C194

Tabela 2 – Composição química do C272

Zn	Pb	Sn	Р	Mn	Fe	Ni		Si		Cı		As	
%	%	%	%	%	%	%		%		%		%	
37,98	0,0079	0,0104	0,0102	0,0022	0,0254	0,0)0086	0,	0010	0,0	0035	0,00	061
Sb	Cd	Ag	Al	S	Au		В		С		Ti		Cu
%	%	%	%	%	%		%		%		%		%
0,0175	0,0006	5 0,0127	7 0,0014	4 0,006	0 0,000	58	0,000	58	0,00	47	0,00	021	61,9

A ferramenta foi usinada em um torno CNC, o material dela aço SAE 5160 obteve durezas próximas as 55 HRC em média após realização de tratamento térmico, têmpera e revenimento. A Figura 2 apresenta os detalhes e dimensões da ferramenta.

Figura 2 – Pino da ferramenta de soldagem FSW.

O processo FSW foi realizado em um centro de usinagem CNC com 5 eixos da marca Pinacle modelo AX45, os parâmetros fixos de ensaio foram rotação de 1200 rpm e avanço de 20 mm/min. Os ângulos da ferramenta utilizados foram 0°, 1°, 2° e 3°, em todos os casos a ferramenta penetrou 1 décimo de milímetro na superfície.

Para a realização das imagens de micro e macrografia as amostras foram polidas e atacadas com ácido nítrico 20%. As imagens foram obtidas através de um microscópio ótico Zeiss AxioLab.A1 acoplado a uma câmera digital ZEISS modelo Axiocam ERc 5s, sincronizado a um analisador de imagens AxioVision Rel. 4.8 e por um estéreo microscópio ZEISS Stemi DV4. As durezas foram medidas por um durômetro EMCO TEST Duravision com carga de 1 gf.

RESULTADOS E DISCUSSÕES

A Figura 3 apresenta a macrografia para o ensaio com a ferramenta sem inclinação (0º) e as micrografias com lente de 5x de ampliação para o plano de avanço (PA), cordão de solda e o plano de retração (PR).

Figura 3 – Macro e micrografias para o ensaio sem inclinação na ferramenta: a) PA; b) Cordão e c) PR.

Pode-se perceber que houve defeitos do tipo túnel, alguns autores [15-17] explicam que, normalmente, esse defeito é formado devido o déficit de calor no processo. Nele o material não atinge a fase plástica adequada para sua mistura, usualmente ele é encontrado no núcleo da solda ou na zona termicamente afetada.

Ainda devido o déficit do aporte térmico pode-se verificar regiões onde há incrustações de materiais sem que haja a mistura adequada. Também é possível notar que a maioria dos defeitos surgem do centro para o lado do plano de retorno.

Outro defeito que é possível identificar é o *kissing bond*, que é um defeito aparente na interface de união entre os materiais soldados. O maior responsável pelo surgimento desse defeito é a falta de penetração da ferramenta, e com isso não há a mistura do material que resulta nessa região com baixa adesão entre os dois materiais [18-19].

A Figura 4 apresenta a estrutura gerada pelo ensaio com ângulo de 1º.

Figura 4 – Macro e micrografias para o ensaio com 1º de inclinação na ferramenta: a) PA; b) Cordão e c) PR.

Analisando-a é possível notar que houve uma diminuição dos túneis gerados, o defeito de *kissing bond* apareceram mais distantes do núcleo da área soldada. Com a inclinação de 1º da ferramenta há uma maior interferência das costas da ferramenta aumentando a pressão e aporte térmico facilitando a mistura. Alguns trabalhos [15-16] apontam como a falta de aporte térmico como um dos responsáveis desse defeito.

Pode-se notar que não houve incrustações de material, porém há uma região de baixa mistura próxima a linha central de união dos materiais. A Figura 5 apresenta a microestrutura obtida através do ensaio realizado com a ferramenta com inclinação de 2º.

Figura 5 – Macro e micrografias para o ensaio com 2º de inclinação na ferramenta: a) PA; b) Cordão e c) PR.

Analisando o ensaio realizado com 2º de inclinação pode-se notar na macrografia que não há defeitos visuais a olho nu, porém, quando se analisa as micrografias percebe-se defeitos como: túneis e *kissing bonds*.

Essa diminuição ocorre devido ao aumento do aporte térmico com a maior interferência do ombro da ferramenta com a superfície do material. Também se nota uma região de intercalação de camadas dos materiais unidos. É possível verificar que a mistura dessas camadas vai diminuindo do plano de avanço até o plano de retração. A Figura 6 mostra as imagens obtidas com a inclinação de 3º durante o processo FSW.

Figura 6 – Macro e micrografias para o ensaio com 3º de inclinação na ferramenta: a) PA; b) Cordão e c) PR.

Analisando a macrografia é possível notar que quase não há a mistura entre os materiais soldados. Há o aparecimento de um túnel no meio da região do núcleo da solda e acima da linha de centro da união dos materiais. Também é possível notar que a região de união é somente a região do núcleo e que as regiões que compreendem o plano de avanço e retorno não se uniram de forma adequada. A Tabela 3 apresenta os valores de dureza das amostras.

	0°	DP	1 ⁰	DP	2°	DP	30	DP
Plano de avanço	126	19,15	131	5,44	128	6,55	113	2,62
Nugget	102	7,12	110	5,24	114	2,49	114	1,25
Plano de retorno	133	8,58	137	4,19	139	0,94	137	1,70

Tabela 3 – Valores de dureza medido nas amostras ensaiadas.

Ao analisarmos os valores de dureza medidos é possível notar que todos os ensaios que apresentaram a mistura de materiais no núcleo da solda tiveram a dureza do plano de avanço e do plano de retorno com valores próximos. Também é possível observar que a região do núcleo da solda possui menor dureza que as demais regiões. As condições de 1º e 2º obtiveram valores similares de dureza em todas as regiões.

As opiniões, hipóteses e conclusões ou recomendações expressas neste material são de responsabilidade do(s) autor(es) e não necessariamente refletem a visão da FAPESP

CONCLUSÕES

- A inclinação da ferramenta influenciou diretamente na qualidade do processo FSW. O ensaio com 2º de inclinação da ferramenta foi a única que gerou uma imagem livre de defeitos, quando analisada sem auxílio de ampliações.
- Os ensaios com 1º e 2º de inclinação da ferramenta foram os que obtiveram as micrografias com menor quantidade de defeito no núcleo da solda. Os *kissing bounds* nestas condições apareceram mais distantes do núcleo.
- Os valores de dureza sempre foram menores no núcleo da solda quando comparados com os planos de avanço e planos de retração.
- Os valores das durezas do núcleo da solda foram similares nas condições de 1º, 2º e 3º. Porém quando comparados com a condição sem inclinação da ferramenta, eles foram de 10% maiores.

AGRADECIMENTOS

A Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), FAPESP pelo apoio ao projeto de pesquisa processo nº 2023/16995-3 e ao CNPq pela bolsa de iniciação científica PIBITI.

REFERÊNCIAS

[1] CALLISTER, William D. Ciência e Engenharia de Materiais: uma introdução. 9. ed. Rio de Janeiro: Ltc, 2016.

[2] SUN, Y.F.; XU, N.; FUJII, H. The microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloys. **Materials Science And Engineering:** A, [S.L.], v. 589, p. 228-234, jan. 2014. Elsevier BV. http://dx.doi.org/10.1016/j.msea.2013.09.094.

[3] MERAN, C. et al. Welding problems with thin brass plates and tungsten inert gas pulse welding. **Science And Technology Of Welding And Joining**, [S.L.], v. 9, n. 2, p. 131-137, abr. 2004. SAGE Publications. http://dx.doi.org/10.1179/136217104225017053.

[4] THOMAS, Wayne M. et al. **Friction Stir Butt Welding**, Patente Internacional Apl. No. PCT/GB92/02203 e GB Patente Apl. No. 9125978.8, Dez. 1991, E.U.A. Patente No. 5460,317.

[5] ROSA, Renato F.; ALMEIDA, Italo O.; VARASQUIM, Francisco M. F. A.; C. JUNIOR, Eli J.; COUTO, Antônio A.; SANTOS, Vinicius T.; SILVA, Márcio R.; NAKAMOTO, Francisco Y.; SANTOS, Givanildo A.. Analysis of the Influence Of Friction Stir Welding on the Microstructure and Mechanical Properties of Alloy UNS-C27200 (CU-ZN). **Materials Research**, [S.L.], v. 26, n. 1, p. 1-7, 2023. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1980-5373-mr-2022-0581.

[6] MARTINS, Floriano; VARASQUIM, Francisco M.F.A.; CRUZ JUNIOR, Eli J.; NAKAMOTO, Francisco Y.; SANTOS, Vinicius T.; VATAVUK, Jan; SILVA, Márcio R.; COUTO, Antonio A.; SANTOS, Givanildo A.. Effect of Friction Stir Welding on Microstructure and Mechanical Properties of uns C19400 Alloy Plates. **Materials Research**, [S.L.], v. 26, p. 1-9, 2023. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1980-5373-mr-2023-0237.

[7] NAGESH, G; RAO, K Nageswara; KKANISHK; ANURAG, K M; ABHINAV, N. Investigation of Mechanical Properties on Non-Ferrous alloys of Copper and Brass Joints made by Friction Stir Welding. lop Conference Series: **Materials Science and Engineering**, [S.L.], v. 1057, n. 1, p. 1-8, 1 fev. 2021. IOP Publishing. http://dx.doi.org/10.1088/1757-899x/1057/1/012062.

[8] SARAVANAKUMAR, S.; KUMAR, H. Vinoth; FRANKLIN, B. Allan; SARAVANAN, M.; SIDDHARTH, Jeeva. Experimental analysis of dissimilar metal of copper and brass plates fabricated friction stir welding. **Materials Today**: Proceedings, [S.L.], v. 33, p. 3131-3134, 2020. Elsevier BV. http://dx.doi.org/10.1016/j.matpr.2020.03.740. [9] HEIDARZADEH, A.; MIRONOV, S.; KAIBYSHEV, R.; ÇAM, G.; SIMAR, A.; GERLICH, A.; KHODABAKHSHI, F.; MOSTAFAEI, A.; FIELD, D.P.; ROBSON, J.D.. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. **Progress In Materials Science**, [S.L.], v. 117, p. 100752, abr. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.pmatsci.2020.100752.

[10] MERAN, Cemal. The joint properties of brass plates by friction stir welding. **Materials & Design**, [S.L.], v. 27, n. 9, p. 719-726, jan. 2006. Elsevier BV. http://dx.doi.org/10.1016/j.matdes.2005.05.006.

[11] KUKA SYSTEM. **Catálogo KUKA** Technology Friction stir welding. Augsburg - Alemanha, [S.I.]. 12 p.

[12] BANIK, Abhijit; ROY, Barnik Saha; BARMA, John Deb; SAHA, Subhash C.. An experimental investigation of torque and force generation for varying tool tilt angles and their effects on microstructure and mechanical properties: friction stir welding of aa 6061-t6. **Journal Of Manufacturing Processes**, [S.L.], v. 31, p. 395-404, jan. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.jmapro.2017.11.030.

[13] ZHANG, Shuai; SHI, Qingyu; LIU, Qu; XIE, Ruishan; ZHANG, Gong; CHEN, Gaoqiang. Effects of tool tilt angle on the in-process heat transfer and mass transfer during friction stir welding. **International Journal Of Heat And Mass Transfer**, [S.L.], v. 125, p. 32-42, out. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.067.

[14] KUMAR, S. Shashi; MURUGAN, N.; RAMACHANDRAN, K.K.. Effect of tool tilt angle on weld joint properties of friction stir welded AISI 316L stainless steel sheets. **Measurement**, [S.L.], v. 150, p. 107083, jan. 2020. Elsevier BV. <u>http://dx.doi.org/10.1016/j.measurement.2019.107083</u>.

[15] KIM, Y.G.; FUJII, H.; TSUMURA, T.; KOMAZAKI, T.; NAKATA, K.. Three defect types in friction stir welding of aluminum die casting alloy. **Materials Science And Engineering**: A, [S.L.], v. 415, n. 1-2, p. 250-254, jan. 2006. Elsevier BV. http://dx.doi.org/10.1016/j.msea.2005.09.072.

[16] HILLER, Daniel de Jesus. ESTUDO DE PARÂMETROS E PERCURSOS NO PROCESSO DE SOLDAGEM DE MISTURA POR ATRITO (FSW) DA LIGA DE ALUMÍNIO 5052. 2007. 128 f. **Dissertação** (Mestrado) - Curso de Engenharia Mecânica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2007.

[17] ALMEIDA, Diego Tolotti de. ANÁLISE MICROESTRUTURAL E AVALIAÇÃO MECÂNICA DE JUNTAS SOLDADAS POR FRICÇÃO E MISTURA MECÂNICA (FSW) DA LIGA DE ALUMÍNIO 5182-O. 2015. 120 f. **Dissertação** (Mestrado) - Curso de Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2015.

[18] KHAN, Noor Zaman; SIDDIQUEE, Arshad Noor; KHAN, Zahid A.; SHIHAB, Suha K.. Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys. **Journal Of Alloys And Compounds**, [S.L.], v. 648, p. 360-367, nov. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.jallcom.2015.06.246.

[19] SATO, Yutaka S.; TAKAUCHI, Hideaki; PARK, Seung Hwan C.; KOKAWA, Hiroyuki. Characteristics of the kissing-bond in friction stir welded Al alloy 1050. **Materials Science And Engineering**: A, [S.L.], v. 405, n. 1-2, p. 333-338, set. 2005. Elsevier BV. <u>http://dx.doi.org/10.1016/j.msea.2005.06.008</u>.

INVESTIGATION INTO THE IMPACT OF TILT ANGLE ON DISSIMILAR FSW OF COPPER AND BRASS

Manganaro, V.S. - manganaro.vinicius@aluno.ifsp.edu.br¹
*<u>Varasquim, F.M.F.A.</u> - franciscomateus@ifsp.edu.br¹
Cruz Junior, E.J. - dacruz.eli@ifsp.edu.br¹
Faustino, A. C. - alexandre.faustino@ifsp.edu.br¹
Santos, G.A. - givanildo@ifsp.edu.br²
Ventrella, V.A. - vicente.ventrella@unesp.br³
Toledo, M.R. - maike.r@aluno.ifsp.edu.br¹
Santos, V.T. - vinicius.santos@termomecanica.com.br⁴
Silva, M.R. - marcio.rodrigues@termomecanica.com.br⁴

¹ Federal Institute of Education, Science and Technology of São Paulo - IFSP Campus de Itapetininga

² Federal Institute of Education, Science and Technology of São Paulo – IFSP Campus de São Paulo

³ Faculty of Engineering of Ilha Solteira-UNESP, Department of Mechanical Engineering

⁴Termomecanica São Paulo S.A.

ABSTRACT

Friction Stir Welding (FSW) is a process that employs a rotating tool with a nonconsumable pin to join materials. However, the configuration of its parameters is of paramount importance to achieve a suitable weld bead. This project evaluated the influence of the tool angle in dissimilar FSW between electrolytic copper and brass sheets. The tools were made of SAE 5160 steel, with a conical pin. The tests were carried out on a 5-axis machining center using the following tool angles: 0°, 1°, 2°, and 3°, with a rotation of 1050 rpm and an advance of 20 mm/min. The generated weld beads were visually assessed, analyzed through macrography, micrography, and hardness, comparing the base material, heataffected zone, and weld region. The best result was obtained with a 2° tilt angle. **Keywords**: Dissimilar Welding, Micrography, Hardness, FSW.